題目👩🏻🏫:Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment
時間🪗🏄🏼♀️:2022年12月2日🚱,9:50-11:20am
地點🧘♂️:騰訊會議(759-517-0738)🤽🏻🪑,密碼:654321
主講人: 舒洪英特聘教授(陜西師範大學數學與統計EON4)
摘要:A nonlocal and delayed cholera model with two transmission mechanisms in a spatially heterogeneous environment is derived. We introduce two basic reproduction numbers of environment and infection, respectively. If the basic reproduction number of environment is strictly less than one and the basic reproduction number of infection is no more than one, we prove globally asymptotically stability of the infection-free steady state. Otherwise, the infection will persist and there exists at least one endemic steady state. For the special homogeneous case, the endemic steady state is actually unique and globally asymptotically stable. Under some conditions, the basic reproduction number of infection is strictly decreasing with respect to the diffusion coefficients of susceptible and infectious hosts. When these conditions are violated, numerical simulation suggests that spatial diffusion may not only spread the infection from high-risk region to low-risk region, but also increase the infection level in high-risk region.
主講人簡介🧜🏼:舒洪英🤴🏿,2010年獲哈爾濱工業大學博士學位🛀🏼。2008年在加拿大阿爾伯塔大學留學兩年🥵,2011年至2014年先後在加拿大新不倫瑞克大學🚣🏼、加拿大瑞爾森大學和約克大學任AARMS博士後研究員🦩。2014年至2018年任職同濟大學特聘研究員🕞🔋,博士生導師👨🏻。2018年至今任陜西師範大學特聘教授🫲🏿,博士生導師。2016年獲上海市浦江人才計劃,2017年獲陜西省百人計劃。主持2項國家自然科學基金項目,1項上海市自然科學基金項目和1項加拿大科研基金項目。主要研究微分動力系統及生物數學方面的應用👁。已發表SCI收錄論文30余篇🎷🐵,分別發表在J. Math. Pures Appl., Journal of Differential Equations, SIAM Journal of Applied Mathematics, Nonlinearity, Journal of Dynamics and Differential Equations, Journal of Mathematical Biology,Bulletin of Mathematical Biology等SCI期刊上。
歡迎廣大師生參加💭!